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Universal formulas for percolation thresholds. Il. Extension to anisotropic and aperiodic lattices
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In a recent paper, we reported a universal power law for both site and bond percolation thresholds in any
Bravais lattice withq equivalent nearest neighbors in dimensibiWWe now extend it to three different classes
of lattices which are, respectively, anisotropic lattices without equivalent nearest neighbors, non-Bravais lat-
tices with two atom unit cells, and quasicrystals. The investigation is focuseld=@and 3, due to the lack
of experimental data at higher dimensions. The extension to these lattices requires the substitutgraaf
effective (non integey valueqe in the universal law. For each of the 17 lattices which constitute our sample,
we argue for the existence of omgy which reproduces both the site and the percolation threshold, with a
deviation with respect to numerical estimates which does not exgéel.[S1063-651X97)10207-0

PACS numbg(s): 64.60.Ak, 64.60.Cn, 64.70.Pf

[. INTRODUCTION discuss in this paper. We believe this sample is large enough
to be representative of a general trend, and then conclude

Very recently we postulated a universal power law forupon the existence of suchgqay in any lattice. For a lattice
both site and bond percolation thresholdg. The formula  which does not belong to our sample, this parameter could be
yields thresholds for any Bravais lattice, at any dimensiorused as an intermediate quantity to predict bonds from site

with an impressive accuracy. It is written percolation thresholds, or vice versa, with the same accuracy.
The paper is organized as follows. Section Il discusses a
pe=pol(d—1)(q—1)]"d", (1)  series of lattices with nonequivalent neighbors. The introduc-

tion of an effective number of nearest neighbors in our uni-
with d the space dimension amfthe coordination number. versal formula for percolation is argued in Sec. Ill. The re-
While b=a for bond dilution,b=0 for site dilution. Three sults are shown and discussed in Sec. lll. Section V contains
different classes were found with three distinct parametesome remarks for future work.
sets {pg;a}. The first class includes two-dimensional
triangle, square, and honeycomb lattices. It is char-
acterized by {p;=0.8889a=0.360%3 for site dilution
and by {py=0.6558a=0.689% for bond dilution. Two- Some periodic Bravais lattices are anisotropic, for in-
dimensional Kagomeand all other lattices of cubic stance, the hexagonal latticedst 3. In this case, any lattice
symmetry(for 3<d<6) constitute the second class, which sjte has six equivalent nearest neighbors inaheb plane
is characterized by {p,=1.2868a=0.616Q and (the bonding angle is 60°) and two nonequivalent sites along
{pPo=0.7541a=0.9344§ for sites and bonds, respectively. A the c axis (the bonding angle is 90°). Actually, the aniso-
third class has been found at high dimensioths 6), which  tropic lattice percolation threshold should depend on the de-
recovers the infinite Cayley tree limit, but is not relevant togree of anisotropy. For the hexagonal lattice, this means that
the present investigation, which deals with lattices only atp. should be different from that of the corresponding isotro-
d=2 and 3. pic lattice with the same set=3,0=8, i.e., the bcc lattice.

In addition to the dimensiord, percolation thresholds This difference has indeed been observed recggilyn the
within a class depend only oq. This is understood in lat- particular case of the stacked triangular lattice, which be-
tices where they nearest neighbors of any site are equiva-comes the hexagonal lattice whars-b=c.
lent, which is indeed the case for all lattices mentioned There also exist non-Bravais lattices which are periodic,
above. However, this is a drastic restriction, since many persuch as fcc and bcc. Another case is the hexagonal-close-
colation problems in physics deal with lattices which do notpacked(hcp) lattice which, from a topologic viewpoint, is a
have this property. It is the purpose of the present work taimple hexagonal lattice with two atoms per unit cell. Perco-
investigate the extension of E(L) to other lattices, via the lation thresholds for the hcp lattice were obtained long ago
substitution ofgq by an effective parametey,s;. [3].

We checked on a sample of 17 lattices, for each of which  Some lattices are not even periodic. This is the case for
there exists one value @fy which reproduces both the site quasicrystals which are aperiodic lattices with long-range or-
and the bond percolation thresholds. The error is withinder. In addition to being interesting in their own right, such
+0.006 for all the lattices, except for two of theftie dual  structures can serve as models for alloylike materials, caus-
Penrose lattice, and the dodecagonal lattice with ferromagng a growing interest in the determination of the quasicrys-
netic links, where the error reaches 0.01 for reasons we alstalline lattice percolation thresholds. First, determinations of

percolation thresholds on two-dimensional quasilattices have

been made on the Penrose tiling and its ddal6]. Recently,
*Laboratoire de I'UniversitePierre et M. Curie—Paris 6, associe percolation thresholds have also been computed in two of the
au CNRS(URA No. 800. most important quasilattices; the simple octagonal and dode-

II. NONEQUIVALENT NEIGHBORS
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lll. EFFECTIVE NUMBER OF NEAREST NEIGHBORS

In the past, attempts have been made to generalize empiri-
cal relations such as the Scher and Zallen approxirffte
which depends on dimension. For instancd at2, these are
gpc(bond)=2.0 andf p.(site)=0.45, with f the lattice fill-
ing factor. Extension to quasilattic8,7] consists of replac-

ing g by the mean coordination number in the invariant
appropriate to bondséthe problem for sites is not solved,
because there is no ambiguous definition of the filling factor
in quasicrystal$7]).
In the same spirit, we propose to extend Elg, replacing
g by an effective valueys;. The dependence of the perco-
d lation thresholds on site connectivity does not imply that the

relevant variable should be the arithmetic avera_gé'here-
fore, we regardy. as a parameter which has to be deter-

mined, rather than arbitrarily forced to be equalzo

The need to substitugwith g in the equations is easily
understood in both the case of quasilattices and the case of
lattices which mix different values df. It is also needed in
anisotropic lattices. Let us again consider the hexagonal lat-
tice with spacings, b, andc in the three lattice directions.

In the limit c— + o, one is left with decoupledb planes for
physical systems having a finite range of interaction. There-
fore, the percolation threshold of the hexagonal lattice must
depend somehow on the ratida. It is expected to range
between that of an isotropic bcc lattice with=3 and
g=8, and that of th&l=2 triangular lattice, associated with
the limit c/a— +. Note that in this limit one recovers an
isotropic lattice withgq=6 instead ofg=8, which suggests
an effective coordinances6g.+<8. In view of such consid-
erations, we propose to extend E#j substitutingg by some

Jes fOr any lattice.

FIG. 1. Less-common lattices studied in this paper: Kag¢ane Note that within the two classes defined by the set
and its dual, dice latticéh); Penrose quasicrystalline latti¢e) and (a,pg), et is the unique unknown parameter. For each lat-
its dual (d); octagonal quasicrystalline lattice with ferromagnetic tice, we find a value of this fitting parameter which, when
links (e) and chemical linksf); dodecagonal quasicrystalline lattice jnserted into Eq(1), reproduces both the site and the bond
with ferromagnetic linkgg) and chemical linkgh). percolation threshold withirF 0.01. Values ofges are re-

ported for different lattices in Table I, together with site and
cagonal tilings[7], which belong to the Penrose local iso- bond percolation thresholdsg, p*c’ obtained wher is re-

morphisrr; class. her latti o that lat placed byqeg in Eq. (1). The mean coordinatioz and p®
In analogy to other lattices, one can require that latticg, gjte and bond percolation are also reported for compari-

sites are connected only via the tile edges. The corresponde,, “eyact or numerical estimatgSare obtained from Refs.
ing percolation problem is called chemical percolation. Add-

ing the connection through the diagonals of tiles which aré6’7’lq'

shorter than the tile edge leads to so-called ferromagnetic

percolation[8]. Both these percolations will be considered IV. RESULTS
here. These lattices are reproduced in Fig. 1. .

Some lattices do not have a single-valued coordination For lattices atl=2, qe differs from z by 1% in the case
numberq. Lattices with mixed-valued coordination can be of the dual Penrose lattice, and is smaller than 0.5% for all
either periodic or nonperiodic. An example of a periodic lat-the other lattices. These data corroborate that two-
tice atd=2 is provided by the dice lattice, which mixes dimensional lattices are divided into the two distinct classes
g=3 and 6. An example of a nonperiodic lattice is the Pendefined in Ref[1]. This is illustrated in Figs. 2 and 3, where
rose tiling, which mixegy=3, 4, 5, 6, and 7. Note that the po's are reported in a log-log plot such that the experimental
dual of the dice is the Kagomiattice, and vice versa, while points for lattices in the same class align on a straight line
the dual of the Penrose tiling was called the Penrose dualccording to Eq(1).
lattice. Both the Kagomend the Penrose dual are lattices The pertinent variable after E€L) is (d—1)(qer— 1) for
with a single-valued coordinatiap=4. Octagonal and dode- sites and §—1)(gz—1)/d for bonds. Those are the vari-
cagonal lattices have mixed-value coordinations. Numericahbles in abscissa in Fig. 3, which reports data for lattices in
estimates of the percolation thresholds of dice can be foundimensionsi=2 and 3(data in higher dimensions have been
in Ref.[6]. already displayed in a similar plot in Refl], with
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TABLE I. Percolation thresholds from this work, compared to “exact estimategiS taken from Refs[6,7,10. A=p.—p¢. * refers

to a multivalued coordination numbémean coordinatiorz). All the lattices are in dimensiod=2, except for the last six ones in the

second class which havke=3. We completed the table caption as followsi has been chosen as the arithmetic average of the parameters

g which reproduce®¢ for the site and bond, respectively, when inserted into(Eg.

First class
Site Bond
Lattice Z_ Qetf pg Pc A pg Pc A
Square 4 4.02 0.5928 0.5970 +0.0042 0.5 0.4935 —0.0064
Honeycomb 3 2.99 0.6962 0.6938 —0.0024 0.6527 0.6581 +0.0054
Triangular 6 5.98 0.5 0.4986 —0.0014 0.34729 0.34955 +0.0023
Dice* 4 4,189 0.5851 0.5854 +0.0003 0.476 0.4754 —0.0006
Penrose* 4 4,194 0.5837 0.5851 +0.0014 0.477 0.4748 —0.0022
Octa. chem. links* 4 4.170 0.585 0.5867 +0.0017 0.48 0.4773 —0.0027
Octa. ferro. links* 5.17 5.013 0.543 0.5389 —-0.0041 0.40 0.406 +0.0057
Dode. chem. links* 3.63 3.638 0.628 0.6269 —0.0011 0.54 0.5419 +0.0019
Second class
Site Bond

Lattice z et Pc Pc A pe Pc A
Kagome 4 3.980 0.6527 0.6567 +0.0040 0.5244 0.5195 —0.0049
Dual Penrose 4 4.04 0.6381 0.6487 +0.0106 0.5233 0.5099 —0.01341
Dode. ferro. links* 4.27 4,218 0.617 0.6264  +0.0094 0.495 0.4835 —0.0115
Hex. compact 12 11.146 0.204 0.2015 -—0.0025 0.124 0.1263 +0.0023
Stac. triangle 8 7.661 0.2623 0.2611 —0.0012 0.1859 0.1872 0.0013
Diamond 4 4.0087 0.43 0.4260 —0.0040 0.1859 0.3935 +0.0055
sC 6 5.9558 0.3116 0.3132  +0.0016 0.2488 0.2468 —0.0020
bcc 8 8.1355 0.246 0.2502 +0.0042 0.1803 0.1755 —0.0047
fcc 12 11.626 0.198 0.1958 —0.0022 0.119 0.1210 0.0020

de=0). Since the first class concerns only lattices which areold estimates is only on the third decimal.

all at d=2, the above variables for sites and bonds, respec- Note the larger error in the dodecagonal lattice. We at-
tively, may reduce to one single common variahlg, as tribute it to an actual bond percolation threshold
shown in Fig. 2.|A| reaches 0.01 only in the dodecagonal Pc(bond)=0.495 [6] larger thana priori expected. One
lattice with ferromagnetic links, and in the dual Penrose latwould indeed have expected.(bond)=0.475 from the
tice. In all the other cases, the error in the percolation thresh-
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FIG. 2. Inverse of percolation thresholds as a function of the FIG. 3. Inverse of percolation thresholds as a function of the
variables —1)(ges—1) and d@—1)(ges—1)/d which reduce variables @—1)(ges—1) and @—1)(ge—1)/d appropriate to
here d=2) to the single variablel.; in logarithmic scales for site and bonds, respectively, in logarthmic scales for lattices be-
lattices belonging to the first class. longing to the second class.
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straight line in Fig. 3, in which case a valupy=4.289, from the formula in Eq(1) involving only the dimensiord

close toz =4.27, would have reproduced both site and bond?f the lattice, and one parametgy; which contains geomet-
percolation thresholds within\|=0.001. The problem with ric information about the lattice. This parameter however,
the estimatep?(bond)=0.495 is also evident from the Scher does not reduce to the mean coordination numberal-

and Zallen invariant. It yieldz pS(bond)=2.11, the largest thoughz and gy differ by a few percent only. Indeed, we
value of this parameter among all the lattices investigate(ﬁ'”d that the universality -does include d_lfferent numerical
[6]. Conversely p.(bond)=0.475 would yield Vvalues forges, and thus different percolation thresholds for

zp.(bond)=2.028, close to the invariant value 2.0 at lattices which have the same set; ). This is evident from
d=2. Table I, which reports results for as many as six lattices with

At d=3, percolation values are reproduced with a very(d=2,z=4), two_lattices with =3, z=8), and two other
good accuracy, sinde\|<0.004 for all the lattices. The dif- ones with (i=3,z=12).

ference between; and z is not negligible, as it reaches a  In our previous work, we had only three lattices belonging
few percent in some cases. This is easily understood in tht® the first class. The present work extends this class from
case of the hexagongtack triangle case, where we argued three to eight lattices. We might have invoked chance for
earlier that a valug.¢ Smaller than 8 is expected. Actually, three points aligned on a same line, but not for eight points
we find g.=7.66, as a consequence of the anisotropy. Th@s in Fig. 1. Therefore, we confirm the existence of two
hexagonal-close-packedticp) lattice has percolation thresh- different classes: one for some of the two-dimensional lat-
olds which are different from those of the fcc lattice, astices, the second for all the other two-dimensional lattices
expected since the hcp lattice is not a Bravais lattice. and all the lattices up td=7.

However, differences are small, which may be attributed We do not have a scheme to derive the relevant variable
to the fact that both lattices are indeed isotropic, each sit€es from the geometry of the lattice. However, an important
being surrounded by 12 equivalent neighbors. In this contextesult of this work is that this variable does exist. It means
the small value of.; close to 11 in the hcp lattice is not that there exists a single value fqgs which accounts for
only due to the non-Bravais nature of the lattice. It is alsoboth the site and bond percolation thresholds for any given
related to the fact that in the fcc latticgek is only 11.6, lattice within +0.01. This result is sufficient to give our
significantly smaller tharg=12, although the coordination formula a predicting ability for percolation thresholds of
number is single valued. other lattices which have not yet been computed. For ex-

On the other handy. differs fromq by only 1% in the —ample, the knowledge of one sitBond percolation thresh-
other lattices(sc, diamond, bdc Still one would expect old for a given lattice is sufficient to determine a point on the
0ef= 0 in such isotropic lattices with a single-valued coordi- relevant straight line in Figs. 2 or 3. Thepy can be found
nation number. The difference betweg andq in this case  from the abscissa of this point, which in turn allows for a
illustrates that our formula for the percolation thresholds isdetermination of the bongsite) percolation threshold from
not exact, as we already stated in Héfl, and as was shown our universal formula, withir-0.01. Depending on whether
convicingly in Ref.[2]. Nevertheless, both site and bond pg or p? is known, the value ofje deduced from Figs. 2 or
percolation thresholds for all the lattices in any dimension3 will be different. However, this difference corresponds
are provided within 1% by our universal law involving only only to the deviation of th@.’'s with respect to the universal
two parameters: the dimensiohand a parameteye which  law, i.e., to less than 1% with the exception of only a few
contains more information on the geometry than the meawutlying values.
coordination. The robustness of our formula suggests an extension to

more complex problems such as directed percolation. Also,
V. CONCLUSION anisotropic percolations with different bond probabilities in

) . different directions may be addressed in the near future.
We have shown that the universal formula for percolation

threholds we reported earligt] for periodic Bravais lattices

Wlth equwal_ent nearest nel_ghb_ors does ext_end to any kind of ACKNOWLEDGMENT

lattice, provided the coordination number is replaced by an

effective valuege. We then conclude that a good estimate  We would like to thank Dietrich Stauffer for stimulating
of both site and bond percolation thresholds can be obtainecomments.
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