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Universal formulas for percolation thresholds. II. Extension to anisotropic and aperiodic lattices

Serge Galam and Alain Mauger
Laboratoire des Milieux De´sordonne´s et Hétérogènes,* Tour 13, Case 86, 4 place Jussieu, 75252 Paris Cedex 05, France

~Received 2 December 1996!

In a recent paper, we reported a universal power law for both site and bond percolation thresholds in any
Bravais lattice withq equivalent nearest neighbors in dimensiond. We now extend it to three different classes
of lattices which are, respectively, anisotropic lattices without equivalent nearest neighbors, non-Bravais lat-
tices with two atom unit cells, and quasicrystals. The investigation is focused ond52 and 3, due to the lack
of experimental data at higher dimensions. The extension to these lattices requires the substitution ofq by an
effective~non integer! valueqeff in the universal law. For each of the 17 lattices which constitute our sample,
we argue for the existence of oneqeff which reproduces both the site and the percolation threshold, with a
deviation with respect to numerical estimates which does not exceed70.01. @S1063-651X~97!10207-0#

PACS number~s!: 64.60.Ak, 64.60.Cn, 64.70.Pf
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I. INTRODUCTION

Very recently we postulated a universal power law
both site and bond percolation thresholds@1#. The formula
yields thresholds for any Bravais lattice, at any dimens
with an impressive accuracy. It is written

pc5p0@~d21!~q21!#2adb, ~1!

with d the space dimension andq the coordination number
While b5a for bond dilution,b50 for site dilution. Three
different classes were found with three distinct parame
sets $p0 ;a%. The first class includes two-dimension
triangle, square, and honeycomb lattices. It is ch
acterized by $p050.8889;a50.3601% for site dilution
and by $p050.6558;a50.6897% for bond dilution. Two-
dimensional Kagome´ and all other lattices of cubic
symmetry~for 3<d<6) constitute the second class, whic
is characterized by $p051.2868;a50.6160% and
$p050.7541;a50.9346% for sites and bonds, respectively.
third class has been found at high dimensions (d.6), which
recovers the infinite Cayley tree limit, but is not relevant
the present investigation, which deals with lattices only
d52 and 3.

In addition to the dimensiond, percolation thresholds
within a class depend only onq. This is understood in lat-
tices where theq nearest neighbors of any site are equiv
lent, which is indeed the case for all lattices mention
above. However, this is a drastic restriction, since many p
colation problems in physics deal with lattices which do n
have this property. It is the purpose of the present work
investigate the extension of Eq.~1! to other lattices, via the
substitution ofq by an effective parameterqeff .

We checked on a sample of 17 lattices, for each of wh
there exists one value ofqeff which reproduces both the sit
and the bond percolation thresholds. The error is wit
60.006 for all the lattices, except for two of them~the dual
Penrose lattice, and the dodecagonal lattice with ferrom
netic links!, where the error reaches 0.01 for reasons we a
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discuss in this paper. We believe this sample is large eno
to be representative of a general trend, and then conc
upon the existence of such aqeff in any lattice. For a lattice
which does not belong to our sample, this parameter could
used as an intermediate quantity to predict bonds from
percolation thresholds, or vice versa, with the same accur

The paper is organized as follows. Section II discusse
series of lattices with nonequivalent neighbors. The introd
tion of an effective number of nearest neighbors in our u
versal formula for percolation is argued in Sec. III. The r
sults are shown and discussed in Sec. III. Section V cont
some remarks for future work.

II. NONEQUIVALENT NEIGHBORS

Some periodic Bravais lattices are anisotropic, for
stance, the hexagonal lattice atd53. In this case, any lattice
site has six equivalent nearest neighbors in thea, b plane
~the bonding angle is 60°) and two nonequivalent sites al
the c axis ~the bonding angle is 90°). Actually, the anis
tropic lattice percolation threshold should depend on the
gree of anisotropy. For the hexagonal lattice, this means
pc should be different from that of the corresponding isot
pic lattice with the same setd53,q58, i.e., the bcc lattice.
This difference has indeed been observed recently@2# in the
particular case of the stacked triangular lattice, which
comes the hexagonal lattice whena5b5c.

There also exist non-Bravais lattices which are period
such as fcc and bcc. Another case is the hexagonal-cl
packed~hcp! lattice which, from a topologic viewpoint, is a
simple hexagonal lattice with two atoms per unit cell. Perc
lation thresholds for the hcp lattice were obtained long a
@3#.

Some lattices are not even periodic. This is the case
quasicrystals which are aperiodic lattices with long-range
der. In addition to being interesting in their own right, su
structures can serve as models for alloylike materials, ca
ing a growing interest in the determination of the quasicr
talline lattice percolation thresholds. First, determinations
percolation thresholds on two-dimensional quasilattices h
been made on the Penrose tiling and its dual@4–6#. Recently,
percolation thresholds have also been computed in two of
most important quasilattices; the simple octagonal and do
322 © 1997 The American Physical Society
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56 323UNIVERSAL FORMULAS FOR . . . . II. . . .
cagonal tilings@7#, which belong to the Penrose local iso-
morphism class.

In analogy to other lattices, one can require that lattic
sites are connected only via the tile edges. The correspo
ing percolation problem is called chemical percolation. Add
ing the connection through the diagonals of tiles which a
shorter than the tile edge leads to so-called ferromagne
percolation@8#. Both these percolations will be considered
here. These lattices are reproduced in Fig. 1.

Some lattices do not have a single-valued coordinatio
numberq. Lattices with mixed-valued coordination can be
either periodic or nonperiodic. An example of a periodic la
tice at d52 is provided by the dice lattice, which mixes
q53 and 6. An example of a nonperiodic lattice is the Pen
rose tiling, which mixesq53, 4, 5, 6, and 7. Note that the
dual of the dice is the Kagome´ lattice, and vice versa, while
the dual of the Penrose tiling was called the Penrose du
lattice. Both the Kagome´ and the Penrose dual are lattice
with a single-valued coordinationq54. Octagonal and dode-
cagonal lattices have mixed-value coordinations. Numeric
estimates of the percolation thresholds of dice can be fou
in Ref. @6#.

FIG. 1. Less-common lattices studied in this paper: Kagome´ ~a!
and its dual, dice lattice~b!; Penrose quasicrystalline lattice~c! and
its dual ~d!; octagonal quasicrystalline lattice with ferromagnetic
links ~e! and chemical links~f!; dodecagonal quasicrystalline lattice
with ferromagnetic links~g! and chemical links~h!.
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III. EFFECTIVE NUMBER OF NEAREST NEIGHBORS

In the past, attempts have been made to generalize em
cal relations such as the Scher and Zallen approximate@9#,
which depends on dimension. For instance atd52, these are
qpc(bond).2.0 andf pc(site).0.45, with f the lattice fill-
ing factor. Extension to quasilattices@6,7# consists of replac-
ing q by the mean coordination numberz̄ in the invariant
appropriate to bonds~the problem for sites is not solved
because there is no ambiguous definition of the filling fac
in quasicrystals@7#!.

In the same spirit, we propose to extend Eq.~1!, replacing
q by an effective valueqeff . The dependence of the perco
lation thresholds on site connectivity does not imply that
relevant variable should be the arithmetic averagez̄ . There-
fore, we regardqeff as a parameter which has to be det
mined, rather than arbitrarily forced to be equal toz̄ .

The need to substituteq with qeff in the equations is easily
understood in both the case of quasilattices and the cas
lattices which mix different values ofq. It is also needed in
anisotropic lattices. Let us again consider the hexagonal
tice with spacingsa, b, andc in the three lattice directions
In the limit c→1`, one is left with decoupledab planes for
physical systems having a finite range of interaction. The
fore, the percolation threshold of the hexagonal lattice m
depend somehow on the ratioc/a. It is expected to range
between that of an isotropic bcc lattice withd53 and
q58, and that of thed52 triangular lattice, associated wit
the limit c/a→1`. Note that in this limit one recovers a
isotropic lattice withq56 instead ofq58, which suggests
an effective coordinance 6<qeff<8. In view of such consid-
erations, we propose to extend Eq.~1! substitutingq by some
qeff for any lattice.

Note that within the two classes defined by the
(a,p0), qeff is the unique unknown parameter. For each l
tice, we find a value of this fitting parameter which, wh
inserted into Eq.~1!, reproduces both the site and the bo
percolation threshold within70.01. Values ofqeff are re-
ported for different lattices in Table I, together with site a
bond percolation thresholdspc

s , pc
b obtained whenq is re-

placed byqeff in Eq. ~1!. The mean coordinationz̄ and pc
e

for site and bond percolation are also reported for comp
son. Exact or numerical estimatespc

e are obtained from Refs
@6,7,10#.

IV. RESULTS

For lattices atd52, qeff differs from z̄ by 1% in the case
of the dual Penrose lattice, and is smaller than 0.5% for
the other lattices. These data corroborate that tw
dimensional lattices are divided into the two distinct clas
defined in Ref.@1#. This is illustrated in Figs. 2 and 3, wher
pc
e’s are reported in a log-log plot such that the experimen

points for lattices in the same class align on a straight l
according to Eq.~1!.

The pertinent variable after Eq.~1! is (d21)(qeff21) for
sites and (d21)(qeff21)/d for bonds. Those are the var
ables in abscissa in Fig. 3, which reports data for lattices
dimensionsd52 and 3~data in higher dimensions have bee
already displayed in a similar plot in Ref.@1#, with
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TABLE I. Percolation thresholds from this workpc compared to ‘‘exact estimates’’pc
e taken from Refs.@6,7,10#. D[pc2pc

e . * refers
to a multivalued coordination number~mean coordinationz̄ ). All the lattices are in dimensiond52, except for the last six ones in th
second class which haved53. We completed the table caption as follows:qeff has been chosen as the arithmetic average of the param
q which reproducespc

e for the site and bond, respectively, when inserted into Eq.~1!.

First class
Site Bond

Lattice z̄ qeff pc
e pc D pc

e pc D

Square 4 4.02 0.5928 0.5970 10.0042 0.5 0.4935 20.0064
Honeycomb 3 2.99 0.6962 0.6938 20.0024 0.6527 0.6581 10.0054
Triangular 6 5.98 0.5 0.4986 20.0014 0.34729 0.34955 10.0023
Dice* 4 4.189 0.5851 0.5854 10.0003 0.476 0.4754 20.0006
Penrose* 4 4.194 0.5837 0.5851 10.0014 0.477 0.4748 20.0022
Octa. chem. links* 4 4.170 0.585 0.5867 10.0017 0.48 0.4773 20.0027
Octa. ferro. links* 5.17 5.013 0.543 0.5389 20.0041 0.40 0.406 10.0057
Dode. chem. links* 3.63 3.638 0.628 0.6269 20.0011 0.54 0.5419 10.0019

Second class
Site Bond

Lattice z̄ qeff pc
e pc D pc

e pc D

Kagomé 4 3.980 0.6527 0.6567 10.0040 0.5244 0.5195 20.0049
Dual Penrose 4 4.04 0.6381 0.6487 10.0106 0.5233 0.5099 20.01341
Dode. ferro. links* 4.27 4.218 0.617 0.6264 10.0094 0.495 0.4835 20.0115
Hex. compact 12 11.146 0.204 0.2015 20.0025 0.124 0.1263 10.0023
Stac. triangle 8 7.661 0.2623 0.2611 20.0012 0.1859 0.1872 0.0013
Diamond 4 4.0087 0.43 0.4260 20.0040 0.1859 0.3935 10.0055
sc 6 5.9558 0.3116 0.3132 10.0016 0.2488 0.2468 20.0020
bcc 8 8.1355 0.246 0.2502 10.0042 0.1803 0.1755 20.0047
fcc 12 11.626 0.198 0.1958 20.0022 0.119 0.1210 0.0020
ar
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qeff5q). Since the first class concerns only lattices which
all at d52, the above variables for sites and bonds, resp
tively, may reduce to one single common variableqeff , as
shown in Fig. 2.uDu reaches 0.01 only in the dodecagon
lattice with ferromagnetic links, and in the dual Penrose
tice. In all the other cases, the error in the percolation thre

FIG. 2. Inverse of percolation thresholds as a function of
variables (d21)(qeff21) and (d21)(qeff21)/d which reduce
here (d52) to the single variableqeff in logarithmic scales for
lattices belonging to the first class.
e
c-

l
t-
h-

old estimates is only on the third decimal.
Note the larger error in the dodecagonal lattice. We

tribute it to an actual bond percolation thresho
pc
e(bond)50.495 @6# larger thana priori expected. One

would indeed have expectedpc(bond)50.475 from the

e FIG. 3. Inverse of percolation thresholds as a function of
variables (d21)(qeff21) and (d21)(qeff21)/d appropriate to
site and bonds, respectively, in logarthmic scales for lattices
longing to the second class.
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straight line in Fig. 3, in which case a valueqeff54.289,
close to z̄54.27, would have reproduced both site and bo
percolation thresholds withinuDu50.001. The problem with
the estimatepc

e(bond)50.495 is also evident from the Sche

and Zallen invariant. It yieldsz̄ pc
e(bond)52.11, the largest

value of this parameter among all the lattices investiga
@6#. Conversely pc(bond)50.475 would yield
z̄ pc(bond)52.028, close to the invariant value 2.0
d52.

At d53, percolation values are reproduced with a ve
good accuracy, sinceuDu<0.004 for all the lattices. The dif
ference betweenqeff and z̄ is not negligible, as it reaches
few percent in some cases. This is easily understood in
case of the hexagonal~stack triangle! case, where we argue
earlier that a valueqeff smaller than 8 is expected. Actually
we find qeff57.66, as a consequence of the anisotropy. T
hexagonal-close-packed~hcp! lattice has percolation thresh
olds which are different from those of the fcc lattice,
expected since the hcp lattice is not a Bravais lattice.

However, differences are small, which may be attribu
to the fact that both lattices are indeed isotropic, each
being surrounded by 12 equivalent neighbors. In this cont
the small value ofqeff close to 11 in the hcp lattice is no
only due to the non-Bravais nature of the lattice. It is a
related to the fact that in the fcc lattice,qeff is only 11.6,
significantly smaller thanq512, although the coordination
number is single valued.

On the other hand,qeff differs fromq by only 1% in the
other lattices~sc, diamond, bcc!. Still one would expect
qeff5q in such isotropic lattices with a single-valued coord
nation number. The difference betweenqeff andq in this case
illustrates that our formula for the percolation thresholds
not exact, as we already stated in Ref.@1#, and as was shown
convicingly in Ref. @2#. Nevertheless, both site and bon
percolation thresholds for all the lattices in any dimens
are provided within 1% by our universal law involving on
two parameters: the dimensiond and a parameterqeff which
contains more information on the geometry than the m
coordination.

V. CONCLUSION

We have shown that the universal formula for percolat
threholds we reported earlier@1# for periodic Bravais lattices
with equivalent nearest neighbors does extend to any kin
lattice, provided the coordination number is replaced by
effective valueqeff . We then conclude that a good estima
of both site and bond percolation thresholds can be obta
d
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from the formula in Eq.~1! involving only the dimensiond
of the lattice, and one parameterqeff which contains geomet
ric information about the lattice. This parameter howev
does not reduce to the mean coordination numberz̄ , al-
though z̄ andqeff differ by a few percent only. Indeed, w
find that the universality does include different numeric
values forqeff , and thus different percolation thresholds f
lattices which have the same set (d, z̄ ). This is evident from
Table I, which reports results for as many as six lattices w
(d52,z̄54), two lattices with (d53, z̄58), and two other
ones with (d53,z̄512).

In our previous work, we had only three lattices belongi
to the first class. The present work extends this class fr
three to eight lattices. We might have invoked chance
three points aligned on a same line, but not for eight poi
as in Fig. 1. Therefore, we confirm the existence of tw
different classes: one for some of the two-dimensional
tices, the second for all the other two-dimensional lattic
and all the lattices up tod57.

We do not have a scheme to derive the relevant varia
qeff from the geometry of the lattice. However, an importa
result of this work is that this variable does exist. It mea
that there exists a single value forqeff which accounts for
both the site and bond percolation thresholds for any gi
lattice within 70.01. This result is sufficient to give ou
formula a predicting ability for percolation thresholds
other lattices which have not yet been computed. For
ample, the knowledge of one site~bond! percolation thresh-
old for a given lattice is sufficient to determine a point on t
relevant straight line in Figs. 2 or 3. Thenqeff can be found
from the abscissa of this point, which in turn allows for
determination of the bond~site! percolation threshold from
our universal formula, within70.01. Depending on whethe
pc
s or pc

b is known, the value ofqeff deduced from Figs. 2 or
3 will be different. However, this difference correspon
only to the deviation of thepc

e’s with respect to the universa
law, i.e., to less than 1% with the exception of only a fe
outlying values.

The robustness of our formula suggests an extensio
more complex problems such as directed percolation. A
anisotropic percolations with different bond probabilities
different directions may be addressed in the near future.
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